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1.1. Consider a univariate continuous measurement x and use it to predict a univariate con-
tinuous state w (i.e. regression). Think of two computer vision tasks that accomplish
this.

(a) Determining the height/width/dimensions of something based off the a picture with
a fixed reference point.

(b) Determining the best path to get someone out of rubble (during natural disaster
scenarios) by mapping out the environment.

2.1. Consider the case where the observed measurement x is univariate and continuous, but
the world state w is discrete and can take one of two values (w ∈ {0, 1}). Think of two
computer vision tasks that accomplish this.

(a) Predict whether or not an medical image/scan contains a tumor/disease.

(b) Classifying a parts of the image as background or foreground.

1.2. Suppose we use Gaussian distributions for both likelihood and prior

(a) Write down the concrete formula in terms of PDF functions for them.

i. Likelihood: p(x | w) = Nxi(φ0 + φ1w, σ
2)

ii. Prior: p(w) = Nwi
(µp, σ

2
p)

(b) For the unknown parameters in the likelihood and prior (i.e. mean and variance),
compute the MLE solutions for them respectively in detailed steps with clear defi-
nitions of notations.

i. Likelihood:
Easier to work with the log of this function, since the logarithm is a monotonic
function, the maximum will still be the same. So,

φ̂0 + φ̂1ŵ, σ̂
2 = argmax

φ0+φ1w,σ2

[
log
[
Nxi(φ0 + φ1w, σ

2)
]]

where Nxi is the Gaussian distribution for each data point xi . . . xn.

= argmax
φ0+φ1w,σ2

[
log

[
1√

2πσ2

]
−

n∑
i=1

(xi − (φ0 + φ1w))2

2σ2

]
which gets reduced to

= argmax
φ0+φ1w,σ2

[
−0.5 log [2π]− 0.5 log σ2 −

n∑
i=1

(xi − (φ0 + φ1w))2

2σ2

]

Maximize according to mean first, meaning set derivative w.r.t. mean to 0

∂

∂(φ0 + φ1w)
=

n∑
i=1

(xi − (φ0 + φ1w))

σ2
= 0

to find that

φ̂0 + φ̂1ŵ =

∑n
i=1 xi
n
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and using a similar process with the variance, we find

∂

∂σ
=

n∑
i=1

(xi − (φ0 + φ1w))2

nσ2
− 1 = 0

to find that

σ̂2 =

n∑
i=1

(xi − (φ̂0 + φ̂1ŵ))2

n

ii. Prior: Similar to previous problem

µ̂p, σ̂p
2 = argmax

µp,σ2
p

[
log
[
Nwi(µp, σ

2
p)
]]

= argmax
µp,σ2

p

[
−0.5 log [2π]− 0.5 log σ2

p −
n∑
i=1

(wi − µp)2

2σ2
p

]
Maximize w.r.t. the mean to get

n∑
i=1

(wi − µp)
σ2
p

= 0

to find that

µ̂p =

∑n
i=1 wi
n

Maximize w.r.t. standard deviation to also find

σ̂p
2 =

n∑
i=1

(wi − µ̂p)2

n

(c) Consider the prior p(w), assume only the mean parameter is unknown. Compute the
MAP solution for it in detailed steps with clear definitions of notations, assuming
the prior distribution of the unknown mean (as r.v.) is a Gaussian distribution with
known mean and variance.

Calculating the MAP is similar to MLE, but we use

argmax
θ

[
Pθ|x(θ | x)

]
= argmax

θ

[
Px|θ(x | θ)Pθ(θ)

]
and since we already know

Px|θ(x | θ) = p(x | w) = MLE

then applying a natural logarithm, a monotonic function, we get

argmax
w

[p(x | w)p(w)] = argmax
w

[log p(x | w) + log p(w)]

which becomes
∂

∂w
(log p(x | w) + log p(w)) = 0

∂

∂w

(
log
(
Nxi

(φ0 + φ1w, σ
2)
)

+ log
(
Nwi

(µp, σ
2
p)
))

and can further be simplified.
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2.2. Suppose we use Bernoulli distribution for the posterior.

(a) Write down the concrete formula for p(w | x) in terms of the PMF function.

Posterior:
p(w | x) = Bernw[sig[φ0 + φ1x]]

where sig is the sigmoid function and w ∈ {0, 1}
(b) For the unknown parameters in the posterior you defined, compute the MLE solu-

tions in detailed steps with clear definitions of notations. You may not have closed
form solutions, which is fine as long as you show detailed steps.

argmax
φ0+φ1x

[
Bernw

[
1

1 + exp [−(φ0 + φ1x)]

]]

argmax
φ0+φ1x

[
n∑
i=1

[
1

1 + exp [−(φ0 + φ1x)]

]wi
([

1

1 + exp [−(φ0 + φ1x)]

])(1−wi)
]

Similar to previous problem, take the natural logarithm and set derivative w.r.t. the
Bernoulli input to 0, to get

1

1 + exp [−(φ̂0 + φ̂1x̂)]
=

1

n

n∑
i=1

wi

which further gets simplified to

φ̂0 + φ̂1x̂ = − log

(
n∑n
i=1 wi

− 1

)
3. Consider the cat binary classification example again, propose your ideas of how to handle

the challenges (viewpoint, illumination, etc) in the framework you choose (generative or
discriminative or both), try to frame your proposal in terms of data collection, represen-
tation schema, modeling paradigm, learning setup.

If we use a discriminative model with parameters which include taking into account
lighting, angle, etc., images with similar characteristics can be compared to determine
whether or not a cat is in the image. The model would be flexible regarding the values
of these parameters, and grouping images based on similar parameters would get similar
looking images. In non-classical machine learning, like deep learning, a human face/head
can have a generative model with parameters such as length of hair, colour of hair, shape
of face, masculine/feminine, etc., and this same approach can be utilized for the cat
images.
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